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Abstract. In this paper, we propose a novel autoencoder variant, s-
mooth autoencoder (SmAE), to learn robust and discriminative feature
representations. Different from conventional autoencoders which recon-
struct each sample from its encoding, we use the encoding of each sample
to reconstruct its local neighbors. In this way, the learned representations
are consistent among local neighbors and robust to small variations of the
inputs. When trained with supervisory information, our approach forces
samples from the same class to become more compact in the vicinity of
data manifolds in the new representation space, where the samples are
easier to be discriminated. Experimental results verify the effectiveness
of the representations learned by our approach in image classification
and face recognition tasks.

1 Introduction

How to represent images and videos has been an important and fundamental
problem in computer vision, as the performance of various computer vision ap-
proaches relies on the choice of feature representations. Traditional hand-crafted
low level image features, such as Scale Invariant Feature Transform (SIFT), His-
togram of Oriented Gradients (HOG), Local Binary Patterns (LBP), have shown
their effectiveness for many specific vision problems. However, these features are
sub-optimal shallow representations, which require domain knowledge and have
limited generalization ability. Instead of designing features manually, a more
promising approach is to learn effective feature representations automatically
from vision data, through representation learning. For various computer vision
tasks, an ideal feature representation should be robust for small variations, s-
mooth for preserving data structures and discriminative for classification related
tasks.

Recently, representation learning in deep learning context has aroused a great
deal of interests in machine learning and computer vision community. Deep mod-
els learn multi-layer nonlinear transformations from the input data to the output
representations, which is more powerful in feature extraction than hand-crafted
shallow models. Moreover, deep models can progressively capture more abstract
features at higher layers, corresponding to the hierarchical human vision system.
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Representative deep learning methods such as convolutional neural network-
s (CNN), deep belief networks (DBN) and stacked autoencoders (SAE) have
achieved great successes in image classification [1], action recognition [2], ob-
ject tracking [3], etc. Among the building blocks of these models, autoencoders
directly learn a parametric feature mapping function by minimizing the recon-
struction error between input and its encoding (i.e., representation). In addition,
various regularization terms are proposed to improve the basic autoencoders. S-
parse autoencoders penalize the hidden unit to be sparse by L1 penalty [4][5] or
Kullback–Leibler divergence [6] with respect to the binomial distribution. De-
noising autoencoders (DAE) [7][8] learn a representation which is robust to small
random perturbations. Contractive autoencoders (CAE) [9] reduce the number
of effective freedom degrees of the representation by adding an analytic con-
tractive penalty. Both DAE and CAE are robust to small changes of the inputs
among the training examples. Moreover, CAE is capable of representing nonlin-
ear manifolds, as its output encodings contract in the directions orthogonal to
the underlying data manifold. This paper focuses on parametric representation
learning along the direction of autoencoder variants.

It is always preferred to preserve the manifold structure at the same time of
representation learning. As proved in [10], preserving the consistence in repre-
sentation of similarity between local neighbors is essential for nonlinear feature
learning. Classical manifold learning methods [11][12][13] learn embedding co-
ordinates instead of explicit feature mappings, thus limit their usage as feature
extractors. Local sparse coding methods [14][15] are capable of revealing the
manifold structure, but their iterative coding process is far from efficient. Recent
works incorporate manifold regularization into deep learning models and obtain
parametric feedforward encoders on nonlinear manifolds, e.g., deep learning via
semi-supervised embedding [16] and CAE [9]. However, it is not natural to incor-
porate supervisory information into these models during layerwise pretraining,
so they can seldom learn discriminative representations.

In this paper, we propose a novel parametric representation learning method,
smooth autoencoder (SmAE), which possesses more advantages than previous
related methods mentioned above. Specifically, our approach explicitly character-
izes the similarity between input samples by minimizing the weighted reconstruc-
tion error of each sample from its local neighbors, instead of itself as previous
autoencoders do. Therefore, the resultant feature mappings vary smoothly on
manifolds. In addition, since SmAE constrains adjacent samples to have similar
feature representations, the learned feature representations are robust to smal-
l variations as the input changes on the manifold. Moreover, SmAE can learn
discriminative representations by making use of supervisory information. When
trained in (semi-)supervised learning setting, SmAE can increase the within-class
compactness in the learned representation space. Fig. 1 illustrates the classwise
contractive process of our method. Experiments on image classification and face
recognition show the effectiveness of the proposed method. The good perfor-
mance of our method relies on its advantages briefly summarized as follows: (1)
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Fig. 1: Illustration of within-class contraction. The learned function maps the
samples from original space (a) to feature space (b). Circles and triangles repre-
sent samples with different labels. The solid circles and triangles denote the sam-
ple correspondences between the original space and feature space. The dashed
arrows between samples indicate the neighborhood relations.

smooth representations on data manifold, (2) robust to small variations and (3)
discriminative ability due to classwise contraction.

The rest of this paper is organized as follows. In Section 2, we first review
some popular autoencoder variants. Our method is then presented in Section 3 in
detail. The relationship between SmAE and other relevant methods is discussed
in Section 4. Experimental results on image classification and face recognition
are reported in Section 5. Finally, we conclude this paper in Section 6.

2 Autoencoders and Its Variants

Autoencoders[17], as the name suggests, consist of two stages: encoding and
decoding. It was first used to reduce dimensionality by setting the number of
encoder output units less than the input. The model is usually trained using
back-propagation in an unsupervised manner, by minimizing the reconstruction
error of the decoding results from the original inputs. With the activation func-
tion chosen to be nonlinear, an autoencoder can exact more useful features than
some common linear transformation methods such as PCA. If the dimension
of encoding output is set higher than the input dimension, the encoding result
will be enriched and more expressive. By stacking multiple pretrained autoen-
coders followed by a supervised classifier, the deep autoencoders will generate
more abstract and high-level semantic features which are beneficial for image
classification.

Basic autoencoder (AE). The encoder is a function that maps the input
data x ∈ Rdx to dh hidden units to get the feature representation or code as:

h = f(x) = sf (Wx+ bh), (1)
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where sf is a nonlinear activation function, typically a sigmoid function sf (z) =
1

1+e−z , or a hyperbolic tangent function sf (z) = tanh(z) = ez−e−z

ez+e−z . The param-

eters of the encoder are a dh × dx weight matrix W and a bias vector bh ∈ Rdh .

The decoder function g maps the outputs of hidden units back to the original
input space as:

y = g(h) = sg(W
′
h+ bo), (2)

where sg is the activation function which usually has the same form as that in

the encoder. The parameters of the decoder are a dx×dh weight matrix W
′

and
a bias vector bo ∈ Rdx . In this paper, we choose both the encoding and decoding
activation function to be sigmoid function and only consider the tied weights
case, in which W

′
= WT .

To find the model parameters θ = {W, bh,W ′, bo}, autoencoders are trained
by minimizing the reconstruction error on a set of training data xi ∈ Rdx , i =
1, ..., n. The objective function optimized by AE is:

JAE(θ) =

n∑
i=1

L(xi, g(f(xi))), (3)

where L is a loss function which is usually decided according to the input range. If
the input is in [0,1], cross-entropy loss L(x,y) =

∑dx
i=1 xilog(yi)+(1−xi)log(1−

yi) is usually used. In the other cases, square error L(x,y) = ‖x− y‖2 is typi-
cally chosen.

Sparse autoencoders (SpAE). Sparse autoencoder[6] is an basic autoen-
coder regularized by a weight decay term and a sparsity constraints on the hidden
units. The objective function of SpAE is:

JSpAE(θ) =

n∑
i=1

L(xi, g(f(xi))) + λ
∑
ij

W 2
ij + β

dh∑
j=1

KL(ρ||ρ̃j), (4)

where ρ̃j = 1
n

∑n
i=1 hj(xi) is the average activation of hidden unit j and the

KL(ρ||ρ̃j) = ρlog ρρ̃j + (1 − ρ)log 1−ρ
1−ρ̃j is the KL divergence between Bernoulli

random variables with mean ρ and ρ̃j . The second term tends to decrease the
magnitude of the weights and prevent over-fitting. β and λ control the tradeoff
among the loss and two penalty terms.

Denoising autoencoders (DAE). To make the representations robust to
partial corruption of the input patterns, Vincent et al. [7][8] present an alterna-
tive form to train autoencoders. Instead of directly reconstructing the original
input samples, denoising autoencoders learn to reconstruct the clean input xi

from the artificially corrupted counterpart x̃i. DAE is trained by optimizing the
following objective function:

JDAE(θ) =

n∑
i=1

Ex̃i∼q(x̃i|xi)[L(xi, g(f(x̃i)))]. (5)
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Typically, two common corruptions are additive isotropic Gaussian noise, x̃ =
x + ε, ε ∼ N (0, σ2I), and binary masking noise, where a random fraction of
inputs are set to zero.

Contractive autoencoders (CAE). To robustness to small perturbation-
s around the training points, [9] proposes a regularization that measures the
sensitivity of the encodings with respect to the input. The contractive auto-
encoder(CAE) has the following objective function:

JCAE(θ) =

n∑
i=1

(
L(xi, g(f(xi))) + λ ‖Jf (xi)‖2F

)
, (6)

where Jf (xi) =
∑
jk(

∂hj(xi)
∂xik

)2 is the Jacobian matrix which encourages the
mapping to the feature space to be contractive in the neighborhood of the train-
ing data.

3 Smooth Autoencoders

In this paper, we propose a novel autoencoder variant, smooth autoencoders
(SmAE), to learn nonlinear feature representations. For each input, SmAE aims
to reconstruct its target neighbors, instead of reconstructing itself as traditional
autoencoder variants do. Formally, the objective function of SmAE is defined as:

JSmAE(θ) =

n∑
i=1

k∑
j=1

w(xj ,xi)L(xj , g(f(xi))) + β

dh∑
j=1

KL(ρ||ρ̃j), (7)

where w(·, ·) is a weight function defined through a smoothing kernel w(xj ,xi) =
1
ZK(d(xj ,xi)), and the item Z is used to guarantee

∑k
j=1 w(xj ,xi) = 1 for all i.

k is the number of target neighbors of xi(see Section 3.1 for detail discussions).
d(·, ·) is a distance function which measures the feature distance/similarity in
the original space. The first term in Eqn. (7) forces neighboring input samples
to have similar representations. In this way, the resultant feature representations
are not only robust to local variations but also smooth as the input samples vary
on the manifold. The second term in the objective function regularizes on model
complexity by using KL sparsity.

Besides the advantages of robustness and smoothness, SmAE can learn dis-
criminative representations under (semi-)supervised learning settings, with prop-
er selection of target neighbors. In the following subsections, we discuss on the
choice of target neighbors and the reconstruction loss term in more details, and
then describe the model training process.

There are different ways to define the weight function by using arbitrary ker-
nel functions K(·) and distance functions d(·, ·). Some common choices of kernel
functions include Gaussian kernel, as well as triangular, uniform and tricube
kernels. The distance function can be chosen as any standard distance functions
based on Lp norm or learned through metric learning methods designed by do-
main experts. In this paper we choose Gaussian kernel which is widely used for
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manifold learning:

w(xj ,xi) =

{
1
Z exp(−

‖xi−xj‖2
σ ) xj ∈ Ni

0 otherwise
(8)

Ni denotes the target neighborhood of sample xi. The bandwidth of kernel σ is
selected by cross-validation in our experiments. In this setting, the normalization

item is Z =
∑k
j=1 exp(−

‖xi−xj‖2
σ ).

3.1 Target Neighbors

Target neighbors can have different definitions, depending on the learning tasks
and domain knowledge. Concretely speaking, we may decide the target neighbors
according to unsupervised, supervised and semi-supervised learning settings, as
well as the characteristics of learning tasks and training data.

Unsupervised target neighbors. For each xi from the training data, we
may choose k nearest neighbors based on an appropriate metric, such as Eu-
clidian, Mahalanobis and cosine. In this paper, we use Euclidian distance to
define the neighbourhood. The k nearest neighbors are considered as the k tar-
get neighbors and the corresponding distances are used to compute the weight
function.

Supervised target neighbors. Under this setting, target neighbours are
defined as k nearest neighbors with the same label of xi. Besides the tradition-
al global metrics, some local metrics can also be used to compute the weight
function.

Beyond label information and original distance, smooth autoencoders can
also utilize other forms of information, such as pairwise constraints, artificial
deformation and temporal/spatial coherence to define or generate target neigh-
bours. When we make use of supervisory information to decide the supervised
target neighbors, SmAE can increase the within-class compactness in the learned
representation space, as illustrated in Fig. 1. In this way, SmAE can learn dis-
criminative representations in supervised and semi-supervised learning settings.

3.2 The Loss Function

Two typical loss functions commonly adopted in training autoencoders are squared
error Lse(x,y) = ‖x− y‖2 and cross-entropy loss Lce(x,y) = −x · log(y)− (1−
x) · log(1−y), where · denotes the the element-wise product operator. When the
input data and feature representation are normalized in [0,1], the cross-entropy
loss function is usually applied.

If the cross-entropy loss function is chosen, the weighted reconstruction error
of SmAE for sample xi can be simplified into the form −

∑k
j=1 w(xj ,xi)xj ·

log(g(f(xi)))− (1−
∑k
j=1 w(xj ,xi)xj) · log(1− g(f(xi))). Let us consider

x̃i =

k∑
j=1

w(xj ,xi)xj (9)
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Fig. 2: Smooth autoencoder with cross-entropy loss

as a transformed version of xi. Then, the objective function of SmAE can be
rewritten as:

JSmAE(θ) =

n∑
i=1

Lce(x̃i, g(f(xi))) + β

dh∑
j=1

KL(ρ||ρ̃j). (10)

Therefore, SmAE can be considered as an ordinary sparse autoencoder, with new
deformation samples constructed according to Eqn. (9) as the reconstruction
targets. Fig. 2 shows the actual model architecture of SmAE with cross-entropy
loss. In all experiments in this paper, cross-entropy loss is adopted as the loss
function.

3.3 Model Pretraining and Stacking

Similar with previous autoencoder variants, smooth autoencoder can be used
to build a deep network. For the first layer in the deep model, we choose the
target neighbors defined in 3.1 and calculate the transformed version according
to (9) for each training sample. The objective function (10) is minimized using
standard back-propagation algorithm. The optimization procedure in layer-wise
pretraining for smooth autoencoder based on cross-entropy loss function is shown
in Algorithm 1. The representations learned by the first layer are then used as
the input of the second layer, and so on so forth. After layer-wise pretraining,
the network parameters are further fine-tuned using label information provided
on top of the network in the supervised case.

4 Discussions

The smooth autoencoders possess close relationship with popular methods in-
cluding sparse coding and other autoencoder variants.
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Algorithm 1 Layer-wise pretraining of Smooth Autoencoder with Cross En-
tropy loss

Input: The training data set {xi}ni=1

Output: learned weight W , bias bh,bo
1: Compute the transformed versions {x̃i}ni=1 for each training data, and initialize
W, bh, bo

2: while not stopping criterion do
3: Set ∆W = 0,∆bh = 0,∆bo = 0
4: Perform the feedforward pass, compute the activation of the hidden layer zhi =
Wxi + bh and output layer zoi = WT sf (zhi ) + bo

5: Compute the error term:

δoi = ∂Lce((x̃i,g(f(xi))))
∂zoi

= −
(

x̃i
sg(z

o
i )

+ 1−x̃i
1−sg(zoi )

)
· s′g(zoi )

δhi =
(
Wδoi + β

(
ρ
ρ̃i

+ 1−ρ
1−ρ̃i

))
· s′f (zhi )

6: Compute the partial derivatives:
∆W =

∑n
i=1

JSmAE(W,bh,bo;xi)
∂W

=
∑n
i=1 sf (xi)δ

o
i
T + δhi x

T
i ;

∆bh =
∑n
i=1

JSmAE(W,bh,bo;xi)
∂bh

=
∑n
i=1 δ

o
i ;

∆bo =
∑n
i=1

JSmAE(W,bh,bo;xi)
∂bo

=
∑n
i=1 δ

h
i ;

7: Update W, bh, bo by gradient descent
8: end while

4.1 Relationship with Sparse Coding

Standard sparse coding solves the following optimization problem:

min
D∈Rdx×K

αi∈RK ,i=1,...,n

n∑
i=1

(‖xi −Dαi‖22 + γ|αi|1), (11)

where D = [d1,d2, ...,dK ] ∈ Rdx×K is the dictionary to be learned, with di
being the ith atom. αi is the encoding of sample xi with respect to dictio-
nary D. The factor γ is used to balance the reconstruction error and sparsity
penalty. An autoencoder can be viewed as sparse coding with explicit encoding
function (i.e., an forward inference process) if the decoder is linear. Therefore,
the direct encoding of autoencoders may be used to approximately replace the
computation-expensive sparse coding by our intuition.

Some variants of sparse coding methods also attempt to use the local property
from a manifold perspective. Local coordinate coding(LCC) [14] approximately
represents each data point by a linear combination of its nearby anchor points
from the view of reconstruction. More Recently, Smooth sparse coding(SSC) [15]
is proposed to incorporate local feature similarities into the sparse coding frame-
work. Different from them, our proposed method can learn an explicit encoding
process with better robustness in small variations as well as discriminative abil-
ity due to within-class compactness. Besides, the proposed SmAE can further
be easily stacked into a deep framework, which also makes the whole model
optimized globally with back-propagation.
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Fig. 3: Comparison between contractive autoencoder (the left) and smooth au-
toencoder (the right). The dashed curve refers the manifold that data rely on.

4.2 Relationship with Other Autoencoder Variants

Both smooth autoencoders and sparse autoencoders use the sparsity constraints
to push the majority of representations close to zero. Sparse autoencoders en-
code the samples individually and ignore the mutual dependence. Therefore,
small variances in the input space may result in distinct changes on the learned
representations. Different from sparse autoencoders, smooth autoencoders can
capture the local similarity by explicitly considering manifold structures, and
thus the learned representations are less sensitive to variational inputs.

When the cross entropy loss function is adopted, the weighted reconstruction
error of smooth autoencoders has similar form with denoising autoencoders, as
expressed in Eqn. (10). However, the robustness of denoising autoencoders is
stochastic which is determined by the corruption progress. Smooth autoencoder
uses transformed samples generated by target neighbors to model local variance.
Therefore, the learning processing is analytic rather than stochastic, and the
learned representations are more effective for classification tasks.

Smooth autoencoders are closely related to contractive autoencoders, as both
of them learn robust representations along data manifolds. CAE penalizes on
the Frobenius of the Jacobian matrix of the encoding function. As illustrated
in Fig. 3, this penalty makes the representations contractive in the direction of
noise which is orthogonal to the manifold. SmAE penalizes weighted reconstruc-
tion errors on target neighbors to guarantee robust and smooth representations.
However, contractive autoencoders do have limitations: it is robust only to in-
finitesimal input variations and it cannot learn discriminative representations.
Smooth autoencoders alleviate these limitations as they consider relaxed vari-
ations within local neighborhoods and increase within-class compactness using
supervisory information.
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5 Experiments

We evaluate smooth autoencoders as a representation learner in handwritten
digit recognition on MNIST dataset [18] and its variations [19], and in face
recognition on the Extended YaleB [20] and AR face [21] datasets. In our method,
the main model parameters are chosen by cross-validating on the training set or
using the available validation set.

5.1 Hand Digital Recognition

We first verify the effectiveness of SmAE on the widely used MNIST dataset,
which consists of handwritten digit images with 28 × 28 pixels. The original
MNIST dataset and MNIST variations are used in the following experiments.

Classification on MNIST. Following the standard protocol of MNIST,
60,000 images from MNIST dataset are used for training and 10,000 for testing.
To intrinsically validate the effectiveness of the proposed method, here we com-
pare several baselines, including AE, SpAE, DAE and CAE. In the proposed
SmAE, the network is constrained with tied weights and the sigmoid activation
function. The number of hidden nodes is set to 1000. To verify the effective-
ness of preservation of neighbor structures, here we only consider unsupervised
SmAE by choosing k = 5 target neighbors in the unsupervised way (see Section
3.1). The comparison results are reported in Table 1. As shown in this table,
unsupervised smooth autoencoder has lower classification error than AE, SpAE
and DAE, and is even comparable to the state-of-the-art method CAE. Further-
more, if we stack two SmAEs into a deep framework, the proposed method can
sharply reduce the error rate to 1.06%.

Table 1: Classification Results of different autoencoders on MNIST dataset

Method AE SpAE DAE[7] CAE[9] SmAE

Test error(%) 1.68 1.19 1.18 1.14 1.15

Classification on MNIST variation. As a benchmark, MNIST varia-
tion[19] is usually used to evaluate deep learning algorithms recently. It contains
various classification tasks. Here, we choose three tasks: “mnist-basic”, “mnist-
rot” and “rect” to test our method. “mnist-basic” is a subset dataset of MNIST.
Images in “mnist-rot” are rotated by an angle generated uniformly between 0
and 2π radians. The above two datasets both contain 10000 samples for train-
ing, 2000 samples for validating and 50000 samples for testing. “rect” is a binary
classification task to discriminate between wide and long rectangles. It has 1000,
200 and 50000 samples as training, validating and testing sets respectively.
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Fig. 4: Classification accuracy on MNIST variations

As the deep learning algorithms have reached the state-of-the-art perfor-
mance, here we compare those classic deep learning methods with properly s-
tacked layers, including stacked AE (SAE), DAE, CAE and Restricted Boltzman
Machine (RBM). In our method, we use the unsupervised target neighbor to
define the weight function. After layerwise pretraining, the network is further
finetuned with a softmax classifier. The hyper-parameters such as layer sizes,
sparsity penalty and kernel bandwidth are obtained by using the validation set.
In Fig. 4, we report the classification accuracy of all comparison methods, in the
above three classification tasks, where the digit after the method name marks
the number of layers in its deep network, e.g., “SmAE-2” means the proposed
model network is constructed by stacking two SmAEs. The other comparison
results are quoted from the related published literatures [7] and [9], whose re-
ported best results are shown in this table. In most cases, smooth autoencoders
achieve comparable and even better results than the other current state-of-the-
art methods.

To explicitly show the good property of smooth autoencoder, we do the 2D
visualization on the mnist-basic dataset. In Fig. 5, different colors represent the
images from 0∼9 digits. Principal Component Analysis is used to reduce the
dimensions of the representations learned by conventional autoencoder, unsu-
pervised smooth autoencoder and supervised smooth autoencoder. All the three
methods are respectively abbreviated as AE-2, SmAE-2.unsup and SmAE-2.sup,
since the number of hidden layers is two. We use all the 10000 training data and
randomly choose 10000 test data for comparison. As shown in the figure, the
unsupervised SmAE-2 can capture locality property which makes the data more
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Fig. 5: 2D visualization of within-class compactness

Fig. 6: Affinity Matrix of mnist-basic

separable than the conventional autoencoder. By further using the label informa-
tion, the supervised SmAE-2 can learn representations which distinctly increase
the within-class compactness. In addition, we randomly choose 5 samples of each
digit from test data and construct the affinity matrix as shown in Fig. 6. As we
can see, samples from the same digit are highly compacted in SmAE-2.sup.

5.2 Face Recognition

In this section, we conduct extensive experiments on two standard face datasets,
extended YaleB [20] and AR face [21], to evaluate the proposed method. Ex-
tended YaleB dataset consists of 2,414 frontal-face images of 38 persons under
64 illumination conditions. The original images are cropped to 50×50 pixels. For
each person, we randomly sample 32 images for training and the rest for test-
ing. AR dataset contains the frontal images of 126 persons, which are collected
across two separate sessions with different facial expressions, lighting and occlu-
sion variations. Following the standard evaluation protocol, we random choose
50 males and 50 females with 2,600 images to verify the proposed methods. A-
mong them, 20 images per person are randomly selected for training and the
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Table 2: Single Layer Face Recognition Rate(%)

Method Extended YaleB AR face mean

SpAE 94.07 93.50 93.79
DAE 93.57 93.17 93.37
CAE 93.82 93.83 93.83

SmAE.unsup 94.17 94.00 94.09
SmAE.sup 95.16 95.00 95.08

rest six of each person for testing. All the images are cropped into 80× 64 pixels
gray images.

First, we perform single layer smooth autoencoder and compare it with dif-
ferent autoencoder variants. Besides unsupervised SmAE, here we also consider
the supervised case by using manual labels in the construction neighbor weights
to further enhance the discriminative feature learning. Both methods are respec-
tively abbreviated as SmAE.unsup and SmAE.sup. In our methods, the nearest
neighbors k = 5 and k = 10 are respectively set for the unsupervised and super-
vised cases. The number of the hidden units is set to be 600. A softmax classifier
is connected to the output layer to check the performance on face recognition.
The parameter σ is set to be 0.05, β and ρ are set to 0.1. For other methods, we
try to tune their referred parameters and reported the best results. As shown
in Table 2, under both unsupervised and supervised setting, smooth autoen-
coder can still improve the recognition performance by using the preservation of
manifold structures in our proposed SmAE.

Next, we further compare our method with several related face feature rep-
resentation methods by using the solider sparse coding theory, including K-
SVD [22], SRC [23], LC-KSVD [24], DDL-PC2 [25] and MMDL [26]. All these
comparison methods have demonstrated their robust representation ability in
the description of images. To learn more abstract and robust representation, in
our method we stack two-layer smooth autoencoders by using supervised target
neighbor definition. The number of units in both hidden layers are set to 1000.
k is set to 5 and the parameters σ, β and ρ are simply set to be 0.1 without
further tuning. We conduct 10-round random experiments, and then report av-
erage recognition rate in Table 3. As we can see, smooth autoencoders achieve
the highest accuracies on both datasets. This further demonstrates that the rep-
resentation learned by our method is more effective for image classification.

6 Conclusions and Future Work

In this paper, we present a novel neural network method: Smooth Autoencoder.
By using the encoding of a sample to reconstruct its target neighbors instead of
itself, the relationship between similar local features can be captured. We further
show the representations learned by our method are robust to small variation-
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Table 3: Face recognition rates (%) on Extended YaleB and AR face database

Method Extended YaleB AR face

K-SVD 90.5 90.0
SRC 88.6 74.5

LC-KSVD 95.0 93.7
DDL-PC2 95.3 96.6

MMDL 97.3 97.3
SmAE-2 98.2 98.4

s. By making use of supervisory information, smooth autoencoder can enhance
within-class compactness which is beneficial for classification tasks. Experimen-
tal results show that our approach improves the conventional autoencoder and
achieve comparable or better performance on handwritten digit recognition and
face recognition. For future work, we can extend the target neighbor definition
to different applications, such as action recognition in spatial-temporal videos.
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